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A digital phase-locked loop (PLL) scheme is described which detects the phase and
power of a high SNR calibration tone. The digital PLL is implemented in software directly
from the description given in this article. It has been used to evaluate the stability of the
Goldstone Deep Space Station open loop receivers for Radio Science. Included is a deriva-
tion of the Allan variance sensitivity of the PLL imposed by additive white Gaussian noise;
a lower limit is placed on the carrier frequency.

I. Introduction

To facilitate the evaluation of the phase and gain stability
of the DSN open loop receivers for Radio Science, a detection
scheme was developed. Radio Science objectives accommo-
dated inciude the study of the atmospheres and ionospheres
of the planets and satellites by means of radio occultation of a
signal sent from a spacecraft and received at Earth (at a Deep
Space Station). The stability of the receivers directly affects
the quality of the science return of the experiment.

The process of testing station stability supported by this
detection scheme involves three stages. The first stage consists
of running the test and digitally recording the calibration tone
on tape. The tone is generated at 2.3 GHz or 8.4 GHz and is
downconverted to an intermediate frequency inside the
antenna, cabled to the Signal Processing Center, where it is
further downconverted by the IF-to-video converter, and then
sampled by an analog-to-digital converter and recorded on
tape. The second stage in testing station stability is detection
of the calibration tone frequency (phase) and power as func-

tions of time from the voltage samples recorded on the tape;
the detection is accomplished by computer software that di-
rectly implements the scheme presented in this article. The
detected frequency and power are stored in a computer data
file. The last stage involves postprocessing the detected data
file to yield suitable statistical measures of the calibration tone
stability. These measures include Allan variance [4] as a mea-
sure of frequency stability, phase variation plotted as a func-
tion of time, power spectral plots of the detected frequency
and tone power, and simple plots of the detected frequency
and tone power. The scheme presented in this article is an
implementation of the second stage: detection of the fre-
quency (phase) and power of the tone. This article does not
discuss the details of the latter postprocessing stage, although
the theoretical noise-limited Allan variance is derived.

The input signal intended for this detection scheme is
assumed specifically to consist of a single tone centered in a
narrow (relative to the sample rate) band of noise with a high
signal-to-noise ratio. Recent DSN calibration tone tests have
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provided a 40 to 50 dB-Hz SNR with a 100-Hz noise band-
width which corresponds to a 20- to 30-dB signal-to-noise
ratio. These values are high enough to allow practical use of a
noncoherent square-law power detector.

In Sections III and IV, the linearized, continuous-time
model of the detector is analyzed. The continuous-time analy-
sis of the discrete-time phase-locked loop (PLL) is justified by
the assumption that the product of the PLL loop noise band-
width and the sample period is much less than unity, i.e.,
PLLBW « T << 1. Section II discusses the block diagram and
its digital implementation, from which the software is directly
written; the software is the implementation of the PLL pre-
sented in this article and detects the phase and power informa-
tion from the previously recorded calibration tone voltage
samples. The concluding Section V cites some of the results
obtained using this scheme for DSN tests.

Il. Implementation

The heart of this detection scheme is a second order phase-
locked loop. In this section, the block diagram is presented
and described.

Figure 1 is the block diagram of the PLL detector. The left-
hand side of Fig. 1 is a noncoherent tone-power detector used
to normalize the amplitude of the input sinusoid; it is de-
scribed in further detail in Section IV. The upper right-hand
corner of Fig. 1 is the phase-locked loop circuit; it consists of a
loop filter, a numerically controlled oscillator (NCO), a mixer,
and a low-pass filter (LPF;). The frequency of the NCO is
directly proportional to its numerical input. The mixer is used
as a coherent phase detector, and the low-pass filter serves as a
harmonic rejection filter by assisting the loop filter in attenu-
ating the mixer second harmonic to afford greater choice of
input carrier frequency, as explained in Section IIIC. The PLL
is described in further detail in Section IIl. In order to detect
that the loop is in lock, a lock detector is implemented, as
shown in the lower right-hand corner of Fig. 1. Assuming that
the input sinusoid amplitude is properly normalized, the lock
detector output takes the value unity in the phase-locked
state. If the loop is offset by a phase error ¢, the lock detector
output takes the value cos ¢.

The overall detector is implemented in software directly
from the block diagram. A bilinear s- to z-domain transforma-
tion is used to implement each function in discrete time given
the corresponding s-domain transfer function:

AV
= i) 2
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where T is the sample period in seconds.

This transform has the property that a single pole low-pass
filter transformed to a discrete time recursive filter appears
nearly as the same single pole filter at frequencies less than
one-tenth the sampling rate and has a zero at half the sampling
rate.

Below are the bilinear transforms of the loop filter, the
high-pass filter, and the low-pass filters. Canonic form digital
implementations for each are given in Fig. 2.

Loop filter:
s-domain: F(s) = 1Zsas @
1+z7! I-2a
+ +2
bilinear transform: F(z) = szza e
1-z7}
(3)
High-pass filter:
s-domain: H(s) = : @
1+
s
bilinear transform: H (z) = = =
ilinear transform: z 2+¢T |- 12-cT
2+cT
(5)
Low-pass filter:
. _ 1
s-domain: K (s) = — ©
1 +E
-1
bilinear transform: K (z) = 2?.7;1T 1 +z2 dT
-1 «747
2+dT
(7)

lil. Frequency Detection

Presented in this section is a detailed discussion of the
choice of loop parameters and a discussion of the use of Allan
variance as a measure of frequency stability. A lower limit on
the allowable input carrier frequency is derived by considera-
tion of its effect on the Allan variance measure.



A. Linear Loop Analysis

Consider the second order, baseband, linear PLL in the
s-domain. The PLL input is the radian phase 6(¢), and the
output is the detected radian frequency &(¢). The forward
gain path is the loop filter, F'(s) = (1 + as)/bs, and the negative
feedback path is an integrator, G(s) = 1/s. By Mason’s rule,
the closed loop transfer function [3] is given by

F(s)G(s) 1+as

TFFECE)  Jras + 55 ®)

L(s) =

The one-sided loop noise bandwidth is given by the follow-
ing expression [1]:

s 2
1 . 2 _a b
PLLBW = I j; | L (jw)|* dw 5 %)

In order to evaluate the output of the PLL, the transfer
function from input phase to output detected frequency is
derived by Mason’s rule:

~

wout (s) -
bin 1 +as + bs?

s(1 + as)

W(s) = (10)

It is convenient to define the parameter R =a?/b. By manip-
ulating Eq. (9), the following relations are revealed:

_ R+ _a®
¢ = ZPLLBW)’ b= % an)

The system characteristic equation is:
1{ s s\?
1+ =|—) + [— (12)

Q=— (13)

where

This reveals that R is the loop damping parameter. Jaffee
and Rechtin [2] specify optimum loop performance with
R = 2 when the initial phase is unknown but uniformly dis-
tributed as a random variable. Unless stated otherwise, R is
assumed to equal 2 throughout the remainder of this article.
R =2 makes the system slightly underdamped.

B. Allan Variance

Allan variance is a statistical measure of the frequency
stability of a signal. It is a measure of fractional frequency
fluctuations rather than absolute frequency fluctuations; a
fluctuation of 1 Hz in a 10-GHz tone represents a lower Allan
variance than the same 1-Hz fluctuation in a 10-MHz tone. The
sensitivity of the Allan variance measure is limited by the
input noise; with too much noise the Allan variance measures
only the noise. The following defines the theoretical Allan
variance in the case of detecting with the second order PLL
the frequency of a pure tone with a high signal-to-noise ratio
in a band of additive white Gaussian noise (AWGN).

A convenient estimate of Allan variance is given below as
defined in Eq. (4.22) of [4]:

M-1

20 = sar=p 2 Fa®-5@2 (14

i=1

it ~

—, .1 w()

)i(T) 7—[ 2my dt
(i-1)1 0

where v, is the nominal frequency of the calibration tone
prior to any downconversion; ay(r) is the RMS value of all
the two-sample variances taken over the entire set of data.
A single two-sample variance is given by [, (1) —)71-(7)]/\/5
The two-sample variance function, p(z,7), is defined as the dif-
ference between two consecutive averages of a function, each
taken over a period 7 and normalized by v/2.

where

-1
—= -T <
T‘\/i’ T <0
p(tr) = ﬁ?, 0<r<r (15)
0 otherwise

The theoretical Allan variance of the fractional detected
frequency at the output of the PLL is the statistical mean of
the square of the convolution of the two-sample variance func-
tion p(t,7), with the fractional detected frequency output of
the PLL f(£)/vy = &3(2)/2mv,.

]

E{I(F(®)vy) * p(e0)] % (16)

0X()

Iie

power in (f(!)/vo) * p(t,7)
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= [ S(HP(fndf a7

where P(f,7) = the power spectrum of the two-sample variance
function [squared magnitude of the Fourier transform of

p(f,T)] .

2 sin® nrf

(18)
(1)

P(fr) =

and S(f) = the power spectrum of the detected fractional
frequency due to AWGN about a pure tone input to the PLL:

w(i2nf)|?

”7w

S(f)y=S§ (f)‘ (19)

where S,(f) = the phase power spectrum input to the PLL
due to AWGN about a pure tone with high SNR.

Narrowband, high SNR AWGN about a pure carrier repre-
sents a white phase noise power spectrum, Sg(f). about the
carrier with the same narrow band.

(rad?/Hz) ; If1 < By/2  (20)

Se(f) = 2SNR

where By = input noise bandwidth. By substitution,

02(7) - 1 jaf(l +aj2nf)
Y 2.2 : 202
L 8 vy SNR|1 +af2nf - ban“f

2 sin*arf d

(a7 f)?

X (2D

Numerical integration yields

3(PLLBW)

RSP T(PLLBW) >> 1 (22)
4712V(2) SNR 72

oi (r) =

On a log-log plot of ay(T) as a function of 7, the noise-
limited Allan variance plotted for several detection loop band-
widths takes the shape of parallel lines each with a negative
unity slope; this is shown in Fig. 3 with Vg SNR ~ 7.6 X 1020,
The individual plots are only shown for 7 such that 7(PLLBW)
> 1; this is the only domain over which the SNR-limited Allan
variance log-log plot has the negative unity slope. By plotting
only over this domain, any peculiar shape immediately draws
attention to some phenomenon other than high SNR AWGN.
Note that the reduction of detection loop bandwidth to im-
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prove the Allan variance sensitivity further limits the minimum
T over which the Allan variance may be evaluated.

C. Minimum Input Carrier Frequency

Consideration of the significance of the mixer sum product
places a lower limit on the input carrier frequency for this
detection scheme without acting as a detriment to the Allan
variance frequency stability measurement. This serves as a cri-
terion for selecting the carrier frequency. It is assumed that
sampling does not disturb the two-to-one second- to first-
carrier harmonic frequency relationship. The criterion is that
the Allan variance due to the harmonic term alone must be
much less than the Allan variance due to the phase difference
term alone.

First let us consider the phase difference term. The Allan
variance was derived previously and is summarized below, but
here absolute rather than fractional frequency variance is con-
sidered, so the Vg term is removed from Eq. (22).

o (7)

_ 3(PLLBW)

(23
4m* SNRT? )

8(t),abs

Now consider the (absolute) Allan variance due to the sec-
ond harmonic tone:

03 (1) = f S,NP(Af  (24)
2f0, abs .
Recall that
P(f) = M (25)
(ntf)?

S,(f) is the power spectrum at the detector output due
only to the second harmonic term. Assuming zero loop gain at
the second harmonic frequency, §,(f) is the product of the
power spectrum of the second harmonic tone, the harmonic
rejection filter response, and the loop filter response.

S,(7) = PB&W 21,)
+28(f-2f ):HLPF (;2nf)’ ‘F(’z”f)

(26)
P = 1/2 is the power in the second harmonic tone at the

output of the mixer. Assuming the second harmonic is much
higher than the corner frequencies of the filters, the follow-



ing approximations hold. The corner frequency of the har-
monic rejection filter is made equal to ten times the one-sided
loop noise bandwidth so as to only negligibly affect the loop
response.

2 ‘ s
LPF (j2m2fy)| = 1 _ 2SPLLBW
1+(2f,/10 PLLBWY? r?
(27)
F(j2am2fo)|* (ZR PLLBW)2
T | T\ TwR+) (28)
Ky =< — (29)

(7r12f0)2

By substituting Egs. (26)-(29) into Eq. (24) and comparing
Eqgs. (23) and (24),

2 2
o (7 L ol (r 30
PO €3O, (30)
25 PLLBW* R? 3PLLBW
1r4f3(R + 1)212 47 SNRT?

Solving for carrier frequency yields the following lower
limit imposed by Allan variance detriment by the second car-
rier harmonic.

fol > SNRY4 x prLiBW3H (31)

IV. Power Detection

The amplitude detector in Fig. 1 consists of a square-law
power detector preceded by a DC-blocking high-pass filter,
and sinusoidal amplitude is estimated as the square root of
twice the detected power: 4 ~+/2(42/2 + szv)' The perfectly
smoothed square-law detected power is 42/2 + 03 . but there
is an uncertainty in the power detector output due to the
finite smoothing of the post-detection filter; the purpose of
this section is to specify the uncertainty.

The signal input to the detector is assumed to have the
form Acoswt + n(t), where n(t) = \/fnc(t)coswct + \/fns(t)
sinwet. By narrowband noise theory, . and ng are zero mean,
uncorrelated, independent, low-pass, band-limited AWGN

signals each with a two-sided bandwidth By, and a two-sided
power spectral density Ny/2. B, is assumed to be much
smaller than the sample rate.

In [5] it is shown that the two-sided power spectrum at the

output of the mixer is given by the following. Equation (12-62)
of [5] is rewritten below in the terms used in this article.

8,,(f) = P+NB)8(f)

N 2PNO, 0<|f|<BN/2
0 otherwise
12
NEBy - 11 1), 0<IfI<By
+
0 otherwise
(32)

Second harmonic terms are neglected here with the assump-
tion that the postdetection filter removes them, and P = A2/2.

Generally the postdetection low-pass filter noise bandwidth,
AGCBW, is much smaller than the input noise bandwidth, i.e.,
AGCBW < B,,. This allows the approximation, except for the
impulse at the origin, that the power spectrum at the mixer
output, S, (f), is a constant equal to its value near DC. In
this case the total noise power at the output of the postdetec-
tion filter is given by the following expression:

~ 2
P, =~ 20PN, +N_ B, )AGCBW (33)
The power in the desired signal is the DC component.
Pg = (P+NB,) (34)

The signal to total noise power ratio at the output of the
square-law power detector is given by

Py (SNR + B,)?
SNRpp = 5= = (35)
P, 202SNR +B,)AGCBW

where SNR = P/N,, is the input signal to noise density power
ratio. Consider the normalized postdetection noise variance:

SNR (36)
SAR,,
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A simple definition of detection uncertainty (error bar) is
given by

20 B 40 log (1 + 0) (37)

Substituting for o yields the error bar for the power detec-
tion or tone power detection uncertainty:

2(2SNR + B,,) AGCBW
(38)

20 = 40 log (1 + >
dB (SNR+B,)

V. Conclusion

The digital PLL detection scheme presented in this article
has been used to evaluate the stability of the DSN open loop

receivers as described in the introduction. The results obtained
have been very satisfactory. The discoveries made using this
scheme for calibration tone stability tests include the detec-
tion of a 200-millihertz frequency-modulated tone in an
8.4-GHz carrier and calibration tone frequency offsets on the
order of microhertz. This scheme has been used to evaluate
tone generator-receiver system phase stability with a root
Allan variance sensitivity of 10-17 ata 1000-second integration
time. The accuracy of this detection scheme depends only on
the accuracy with which the software records individual param-
eters. FORTRAN double precision variables are accurate up
to 14 significant digits.

The processing time required to detect from a three-hour
digital recording the phase and power of each of two tones
recorded simultaneously on separate channels at a 200-Hz
sample rate, and to complete the differential and Allan vari-
ance postprocessing, was approximately eight hours using a
FORTRAN 77 compiler on the PRIME 550 CPU in the JPL
Radio Occultation Data Analysis (RODAN) facility.
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Fig. 1. Functional block diagram of PLL detector
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Fig. 3. General SNR-limited Allan variance
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Fig. 2. Canonic form digital implementations: (a) loop filter;

(b) high-pass filter; (c) low-pass filters
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